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Both skeletal muscle and adipose tissue are considered as

endocrine organs due to their ability to produce and secrete

several bioactive peptides (e.g. myokines and adipokines).

Those bioactive molecules are well known for their capacity to

influence whole-body homeostasis and alterations in their

production/secretion are contributing to the development of

various metabolic disorders. While it is well accepted that

changes in the composition and functionality of the gut

microbiota are associated with the onset of several

pathological disorders (e.g. obesity, diabetes, and cancer), its

contribution to the regulation of the myokine-adipokine profile

and function remains largely unknown. This review will focus on

myokines and adipokines with a special interest on their

interaction with the gut microbiota.
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Introduction
It is now well established that the gut microbiota can

influence an individual’s health status. Various underlying

mechanisms have been proposed and both direct and

indirect mechanisms of action have been described for

specific bacterial metabolites, such as short-chain fatty

acids (SCFAs), bile acids, branched chain amino acids,

indole propionic acid, and endocannabinoids [1]. In

additiontobacterial components,many endogenous factors

can be influenced by the gut microbiota. Myokines and

adipokines, produced and secreted by the skeletal muscles

and adipose tissues respectively, may be considered as

potential mediators. In this review, we start by introducing

myokines and adipokines and then focus on the crosstalk

between these molecules and the gut microbiota, taking a
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particular interest on how they affect metabolic homeosta-

sis of the whole body.

Myokines
In the body, there are different type of muscles (skeletal,

cardiac, smooth),whichperformdifferent functionsbasedon

their location. They are mainly responsible for maintaining

and changing body posture, producing force and motion,

generating heat (both through shivering and non-shivering),

as well as facilitating movement of internal organs, such as

the heart, digestive organs, and blood vessels [2,3]. Skeletal

muscle is the largestorgan in the human body, accounting for

about 30% of body mass in women and 40% in men, though

muscle mass is affected by several conditions such as fasting,

physical inactivity, cancer, obesity, untreated diabetes, hor-

monal changes, heart failure, AIDS, chronic obstructive

pulmonary disease (COPD), or aging [4]. Skeletal muscle

acts as an endocrine organ, as muscle cells, called myocytes,

are able to synthesize and release several cytokines and

bioactive molecules in response to muscular contraction

(major physiological stimulus) and other stimuli (e.g. nutri-

ents, stress, environmental factors, metabolic dysfunction)

[2,5]. Interleukin (IL)-6 was the first muscle-secreted pro-

tein to be identified in the bloodstream [6]. In contrast to the

deleterious effects (e.g. insulin resistance, impaired glucose

metabolism) associated with elevated plasma concentration

of IL-6 during obesity and diabetes [7], the release of IL-6

after muscle contraction was associated locally (within the

muscle) with an increase in glucose uptake and fat oxidation

via an activation of AMP-activated  protein kinase (AMPK)

and/or phosphatidylinositol 3-kinase (PI3-K) [6].These

effects are mediated by the binding of IL-6 to its specific

transmembrane alpha receptor (ILRa) which form a com-

plex that induces the homodimerization of the glycoprotein

(gp)-130 (also known as IL6Rb) leading to downstream

signaling pathways [6]. IL-6 may also act distally. In the

liver, it stimulates hepatic glucose production during

exercise. In the adipose tissue, it acts as a lipolytic hormone,

accelerating free-fatty acids release [6,8]. These beneficial

effects of IL-6 highlight the cross talk between skeletal

muscle and liver/adipose tissue. IL-6 secreted in response to

exercise was also associated to enhance insulin secretion by

increasingglucagon-likepeptide(GLP)-1secretionfromthe

intestinal L-cells and the pancreatic alpha-cells [9].

However, the different discrepancies observed for the role

of IL-6 on metabolism are still debated. It was also proposed

that IL-6 may arbitrate the anti-inflammatory effects of

exercise via the inhibition of pro-inflammatory cytokines,

like the endotoxin-induced tumor-necrosis factor

alpha (TNF-a), and the stimulation of anti-inflammatory
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cytokines production such as the IL-1 receptor antagonist,

IL-10, and the soluble TNF receptor [6,8,10]. More than ten

years ago Pedersen et al. suggested that cytokines like IL-6,

but also other proteins, that are produced, expressed and

secreted by muscle fibers and act as autocrine/paracrine as

well as endocrine mediators to perform biological functions

should be classified as myokines [6]. Most exert their effects

via specific receptors (both transmembrane and nuclear),

that are expressed in various tissues and organs (e.g. liver,

adipose tissue, brain), thus influencing different metabolic

pathways [11–13]. Several secretome studies performed in
vivo (mouse and human), in vitro (mouse and human muscle

cell lines) and ex vivo (culturing exercised rats muscle) have

let to the characterization and the identification of several

myokines secreted by the skeletal muscle [14–21]. Although

the definition is clear, caution is warranted when searching

the current literature, as the term ‘myokine’ is often errone-

ously used to designate all proteins that originate from the

skeletal muscle. A recent review has described in detail the

proposed myokines and the different methods used for their

identification and validation [22]. These include myostatin,

IL-8, IL-15, irisin, fibroblast growth factor (FGF) 21,

myonectin (also known as CTRP15), brain-derived neu-

trophic factor (BDNF), decorin, meteorin-like (Metrnl)-1,

musculin, secreted protein acidic and rich in cysteine

(SPARC) [23,24]. IL-8 and BDNF primarily exert their

effects in autocrine and/or paracrine manner, and are

involved in angiogenesis and AMPK-mediated fatty acid

oxidation respectively. Others act either locally (autocrine

and paracrine) or distally (endocrine), thereby being

involved in the regulation of several metabolic pathways

(e.g. regulation of the skeletal muscle growth, body weight

regulation, energy homeostasis, glucose homeostasis,

brown-fat-like development, systemic lipid homeostasis,

hypertrophy and myogenesis) [23,24]. As the field is still

relatively new, the myokine family is expected to grow as

research continues.

Although, a link between immune changes and skeletal

muscle contractile activity (exercise) has been proposed

almost 20 years ago [25], possible mechanisms are not yet

fully deciphered. Recent data suggest that exercise and

its variables (volume, intensity, density) influence the

myokine profile production [26], and that certain myo-

kines (e.g. IL-6) lie at the basis of the reduction in the

production of pro-inflammatory cytokines (e.g. TNF-a
and IL-1b), thereby contributing to reduced systemic

inflammation, eventually leading to a decreased risk of

developing insulin resistance and type 2 diabetes [27].

Additionally, myokines, such as BDNF, IL-6, IL-13,

IL-15, Irisin, and FGF21, are known to exert an important

role in mediating the health-promoting effects of regular

physical activity through their ability to affect lipid

and glucose metabolism [27]. Of note, many myokines

(e.g. IL-6, TNF-a and myostatin) are also produced

by the adipose tissue and are therefore referred to as

adipo-myokines. They are thought to be involved in the
Current Opinion in Pharmacology 2020, 52:9–17 

Descargado para Binasss B (binas@binasss.sa.cr) en National Library of Healt
Para uso personal exclusivamente. No se permiten otros usos sin autoriz
interplay between adipose tissue and skeletal muscle

[28]. In 2013, Raschke and Eckel [29], described the

interplay between adipo-myokines as two sides of

the same coin. This description refers to their ability to

exert beneficial or adverse effect on the target tissue

depending on their circulating concentrations. A more

recent study in mice revealed that Metrnl, another adipo-

myokine, is a critical regulator of muscle regeneration that

acts directly on immune cells (e.g. macrophages) to

promote an anti-inflammatory/pro-regenerative environ-

ment and myogenesis. These effects were explained by

the ability of Metrnl to signals directly to macrophages via

a signal transducer and activator of transcription (Stat)-3-

dependent mechanism, while activating muscle cells

(e.g. satellite cells) proliferation indirectly through

macrophages-induced insulin-like growth factor (IGF)-

1 secretion [30��,31]. Although, both myokines and

adipokines have autocrine, paracrine, and endocrine

effects within their corresponding tissues and their target

tissues, two different classification standards are needed.

Given that skeletal muscle tissue is the largest tissue

present in our body in a physiological healthy status, an

alteration in the lean muscle mass/fat mass ratio can be

considered an important element in the alteration of

the adipokine-myokine profile in addition to being a

predictor of insulin resistance and metabolic syndrome.

We assume that this is the main reason for which

myokines and adipokines cannot be classified under

the same standard.

Adipokines
The adipose tissue has long been regarded as an inert

tissue that stores and releases energy under the form of

lipids. This view has changed dramatically following new

insights into the dynamics of this metabolically active

organ. It is now well accepted that the adipose tissue also

serves as an important endocrine organ capable of

synthesizing a wide variety of biologically active

compounds that regulate whole body homeostasis [32].

These bioactive peptides, referred to as adipokines, can

act either locally as autocrine and paracrine factors or

systemically as endocrine factors, and they have been

implicated in the regulation of several metabolic path-

ways [32]. Already in 1987, Siiteri suggested that adipose

tissue had an endocrine function, based on its capacity to

interconvert steroid hormones [33]. Later in 1994, the

discovery that the adipokine leptin was able to signal the

energy status of the periphery to the central nervous

system was the major breakthrough confirming the

adipose tissue as a crucial endocrine organ [34]. In the

years that followed, the adipose tissue secretome was

characterized in depth by several proteomic profiling

approaches [35,36]. To date, more than 600 secretory

proteins have been identified within the adipose tissue,

but it is expected that this number could still increase as

the adipose tissue secretome is further characterized [35].

Not all these proteins are adipokines secreted by
www.sciencedirect.com
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adipocytes, as many factors originate from the non-

adipocyte matrix of adipose tissue composed of connec-

tive tissue matrix, nerve tissue, stromovascular cells, and

immune cells [37,38]. Leptin, adiponectin, resistin,

chemerin, visfatin, vaspin, apelin, omentin, and hundreds

more adipokines have been studied and characterized for

their main actions [32]. Local (autocrine and paracrine)

actions of adipokines (e.g. adiponectin, chemerin, IL-6,

TNF-a) include regulation of adipogenesis, adipocyte

metabolism, immune cells migration, and insulin sensi-

tivity. Systemic (endocrine) effects of adipokines such as

leptin, adiponectin, resistin, chemerin, and apelin involve

the modulation and regulation of different biological

processes such as glucose metabolism, insulin secretion,

inflammation, blood pressure, cardiomyocyte contraction,

lipid metabolism, appetite, and satiety [32]. Like

myokines, adipokines exert their effects through the

activation of specific receptors that can be both

transmembrane or nuclear proteins [32].

In accordance with anatomical location, the adipose

tissues can generally be divided into two main depots:

visceral adipose tissue (VAT) and subcutaneous adipose

tissue (SAT). Taking into account phenotype, functional

role, and gene expression profile, they can be further

classified as either white, brown or beige [39]. The

adipose tissue secretome is not ubiquitous, but is

depot-specific and it is strongly influenced by systemic

and local components associated with inflammation,

insulin resistance, obesity and more [40]. Further adding

to the complexity, the different adipose tissues expresse a

plethora of receptors (both transmembrane and nuclear)

to integrate and respond to the afferent signals from the

periphery and the central nervous system [37,41]. It is this

complex intrinsic network of receptors and ligands that

enable the different adipose tissues to be implicated in

the regulation of many biological processes such as energy

metabolism, neuroendocrine function, and immune func-

tion [37,41]. It is therefore not surprising that a dysregula-

tion of this signaling balance between periphery and

adipose tissue is associated with the onset of several

pathologies. For example, the adverse metabolic

consequences of adipose tissue excess which occur during

obesity can disrupt the normal production/function of

several adipokines, and the altered adipokines profile

maybe partially explain the link between obesity and

inflammation, metabolic and cardiovascular comorbidities

[42]. However, the underlying mechanisms that connect

adipokines and obesity-related inflammation and metab-

olism are still not clearly understood [43]. Interestingly,

several studies (in vivo and in vitro) have highlighted the

role of certain adipokines (leptin, resistin, adiponectin,

visfatin) in mediating the cross talk between skeletal

muscle and adipose tissue in the context of insulin

sensitivity through their ability to affect insulin signaling

pathways, glucose transporter 4 (GLUT-4) translocation

and modulate insulin-mediated skeletal muscle glucose
www.sciencedirect.com 
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uptake [44]. An important limitation of those type of

studies is the use of cells derived from rodent skeletal

muscle, which are characterized by a different fiber type

composition and metabolic characteristics as compared to

human skeletal muscle [44]. Of note, the negative effects

of certain pro-inflammatory adipokines [e.g. TNF-a,
monocyte chemoattractant protein-1 (MCP-1) also

known as CCl2] secreted abundantly during metabolic

disorders can to some extent be counterbalanced by

the protective properties of skeletal muscle-secreted

peptides [8]. As described for the myokines, growing

evidence highlight that physical activity may partly

exerts its beneficial effects via alterations in the

adipokine profile through an increase in the secretion

of anti-inflammatory adipokines and reduction in pro-

inflammatory adipokines [45].

Gut microbiota: link to the myokine-adipokine
function?
Besides the well described effects of exercise and

nutrients on the development of the adipose tissue

and muscles, the role of gut bacteria is becoming more

and more described in the literature. Indeed, the

tremendous number of bacteria that are living in our

gastrointestinal tract are dialoguing not only directly with

our intestinal epithelial cells but also indirectly with

different organs at distance from the gut [1]. Therefore,

we propose that the gut microbiota could be one of

the neglected environmental factors implicated in the

regulation of the myokine-adipokine profile. How the gut

microbiota affects myokine-adipokine production and/or

function is still poorly understood. However, a connection

between microbes and myokines-adipokines may be

found in the well-known ability of the gut microbiota

and their resulting metabolites to affect different host

metabolic pathways [46,47].

A growing body of evidence suggests that alterations in

the composition and/or function of the gut microbiota

during pathological conditions, sometimes referred to as

‘dysbiosis’, play a key role in the onset of several

metabolic disorders that include obesity, type 2 diabetes,

liver disease, but also cancer and even neurological

disorders [48]. Changes in the gut microbiota composition

have been linked to gut barrier dysfunction (e.g. reduced

mucus layer thickness, disruption of the tight junction

proteins, decreased secretion of antimicrobial peptides)

(Figure 1), leading to the translocation of pathogen

associated molecular patterns (PAMPs) able to induce

an abnormal host immune response and low-grade

inflammation [48] (Figure 1). Modifications in bile acids

profiles, decreased secretion of gut peptides, and lower

production of short chain fatty acids (SCFAs) and higher

levels of branched-chain amino acids have also been

observed during dysbiosis [49]. Given the important

contribution of the gut microbiota in maintaining a

good state of health and well-being, its modulation is
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Figure 1
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Link between gut microbiota and myokine-adipokine function. Schematic illustration of the several factors influencing the gut microbiota

composition and how the gut microbiota and its derived metabolites have an important role in the control of the gut barrier function, bacterial

compounds translocation, metabolic functions, and myokine-adipokine production. Although the link between gut microbiota and myokine-

adipokine function is still unclear. AMPK, AMP-activated protein kinase; GLP-1, glucagon-like peptide-1; PYY, peptide YY; PAMPs, pathogen

associated molecular patterns; SCFAs, short-chain fatty acids.
considered an important tool to prevent or treat dysbiosis

associated-metabolic disorders [1].

Several endogenous and exogenous factors affect the

gut microbiota composition (e.g. diet, physical activity,

antibiotics, genetic background) [1] (Figure 1). Among

the different strategies that have been proposed to benefi-

cially modulate the gut microbiota, dietary interventions,

including supplementation with prebiotics (a substrate that

is selectively utilized by host microorganisms conferring a

health benefit, i.e. certain fibers and polyphenols) [50] and/

or probiotics (live microorganism that, when administered

in adequate amounts, improve host health) are considered

the most feasible and efficient [49].

There are several mechanisms by which the microbiota can

regulate host metabolism and health, many of which can be

traced back to microbial metabolites [1]. Among these
Current Opinion in Pharmacology 2020, 52:9–17 
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by bacterial fermentation of indigestible foods (i.e. dietary

source of polyphenols and complex carbohydrates) in

the gastrointestinal tract (Figure 1) [51,52]. SCFAs bind

to specific G protein coupled receptors (GPCRs) (i.e.

GPR41 and GPR43), and the resulting activation of those

receptors triggers the release of glucagon-like peptides

(GLP-1 and GLP-2) and peptide YY (PYY) (Figure 1)

which are involved in the control of energy homeostasis,

fat storage, improvement of the gut barrier function,

metabolic inflammation, glucose metabolism, and gut

transit time [51]. Metabolites coming from polyphenols

are able to activate AMPK via phosphorylation and

modulating some proteins involved in adipogenesis,

lipogenesis, and lipolysis in different tissues [52] (Figure 1).

Bile acids are also strongly influenced by the microbiota.

Indeed, primary bile acids are converted in secondary bile
www.sciencedirect.com
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acids via microbial modification in the gut [53]. While,

primary bile acids are synthesized in the liver and are

secreted in the duodenum where they emulsify ingested

fats to be solubilized for digestion and absorption, they

are also able to bind to specific receptors (i.e. TGR5 and

FXR) expressed in the intestinal cells (Figure 1). TGR5 is

a GPCR expressed on the enteroendocrine L-cells and its

activation induces the secretion of GLP-1 and improves

liver function and glucose tolerance in obese mice [54],

whereas farnesoid X receptor (FXR) is a nuclear receptor

that plays a key role in maintaining glucose tolerance and

insulin sensitivity in a different manner than that

observed for the enteroendocrine regulation [55]. A few

studies on rodents have also described the role of primary

bile acids supplementation in the modulation of the gut

microbiota and their ability to influence serum level of

adiponectin [56,57].

In 2007, we were the first to demonstrate that mice fed a

high-fat diet develop a pro-inflammatory phenotype

closely associated with an increase in the circulating

levels of lipopolysaccharides (LPS), an endotoxin found

on the cell membranes of Gram-negative bacteria. This

condition was defined as metabolic endotoxemia [58].

Once in circulation, LPS reaches several organs including

liver, adipose tissue and muscle where it perturbates

their normal metabolism and participates in the onset

and progression of inflammatory and metabolic diseases

(Figure 1) [59]. Increases in circulating LPS have also

been described in humans after a high-fat meal, with even

worse effects in obese individuals [60]. Besides LPS,

other PAMPs have been associated with a causal

role on the regulation of similar metabolic pathways

(Figure 1) [49].

Many other studies provide evidence for a causal role of

the gut microbiota in metabolic regulation. For example,

the pioneering work by Backhed et al. [61] was the first to

show that germ-free mice (mice lacking a gut microbiota)

were characterized by a lower fat mass and that colonizing

these germ-free mice by transplanting a gut microbiota,

induced increased fat mass together with higher produc-

tion of leptin [62]. In 2008, Membrez et al. [63] described

that mice treated with a cocktail of antibiotics were

characterized by a lower fat mass and higher circulating

levels of adiponectin. These data were in accordance with

the findings that eradicating the vast majority of the gut

microbiota in mice by using antibiotics and, at the same

time, feeding them with a high-fat diet reduced low-grade

inflammation, slowed fat mass development and

improved insulin sensitivity [64]. Inversely to the leptin

levels, the adiponectin levels are drastically decreased

during obesity and low levels of adiponectin anticipate

the development of diabetes and cardiovascular diseases

[65,66]. During obesity, the altered adipokine secretion

profile is also characterized by a high secretion of

pro-inflammatory adipokines such as MCP-1, TNF-a
www.sciencedirect.com 
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[65]. Mice having a genetic deficiency in the ob gene that

codes for leptin (mutant ob/ob mice) are characterized by

an altered gut microbiota and are severally obese with

higher fat mass and lower muscles mass [67]. We discov-

ered that changing the microbiota by using prebiotics (i.e.

oligofructose) was associated with a lower fat mass, but a

higher muscle mass [67]. In addition to the modulation of

the gut microbiota composition, we and others have also

shown that prebiotic feeding in rodents increased the

number of L-cells in the distal part of the small intestine

(jejunum) as well as in the lower part of the large intestine

(proximal colon), and boosted the production and

the release of the active form GLP-1, GLP-2, and PYY

in the portal vein (for review Ref. [47]). As described

above, SCFAs and bile acids are among the metabolites

able to induce the release of those gut peptides (Figure 1).

We also found that prebiotics are able to restore leptin

sensitivity in high-fat diet-induced obese and diabetic

rodents, thereby suggesting that the microbiota could be

targeted to restore appropriate production of different

adipokines [68]. Along these lines, it has been shown that

mice lacking Myd88 specifically in the intestinal

epithelial cells displayed significantly lower leptin levels

when exposed to a high-fat diet as well as a lower resistin

level, an adipokine involved in the development of

insulin resistance [69]. Altogether, this set of data strongly

suggest that the gut microbiota plays a major role in the

regulation of different adipokines and that this is tightly

associated with the activity of the innate immune system

in the gut.

Of note, not all obese people develop metabolic comor-

bidities and some remain ‘metabolically healthy’. Klöting

et al. [70] demonstrated that ‘healthy’ obese individuals

had higher insulin-sensitive adiponectin levels than

obese insulin-resistant subjects associated with a lower

inflammatory tone and a reduced adipose-tissue

macrophages infiltration. Beside the direct link between

obesity and changes in the adipokine profile, so far, there

is not yet evidence showing that this profile is modulated

independently of fat mass changes. However, we hypoth-

esize that targeting the adipose tissue via a modulation

of the gut microbiota may represent a novel strategy to

modulate the adipokine profile (e.g. increase of

‘beneficial’ adipokines such as the adiponectin).

In addition to prebiotics, probiotics have also been shown to

be beneficial on aspects of obesity, steatosis, and insulin

resistance. In this context, the next-generation beneficial

bacterium, Akkermansia muciniphila, a mucin degrading

bacterium that resides in the mucus layer (Figure 1) is

gaining much attention. This bacterium is naturally present

in the human digestive tract in large quantities (up to 3–5%)

but decreases significantly with obesity and several other

diseases [71]. Because of its health-promoting potential, it

has beenthe focus ofmany recent studies. In mice, our group
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was the first to describe its ability to delay the development

of diet-induced obesity and insulin resistance, namely via

the modulation of the energy homeostasis and restoration

of the gut barrier function (e.g. increase in the mucus

layer thickness) (Figure 1) [72,73�,74�]. The abundance of

A. muciniphila was also associated with higher L-cell activity

(e.g. GLP-1 and GLP-2 secretion) which has been hypothe-

sized as a key mechanisms by which this bacterium improves

the gut barrier function and reduce metabolic endotoxemia

[67,68]. In humans, a placebo-controlled study in over-

weight/obese insulin-resistant volunteers confirmed that

supplementation with A. muciniphila could prevent the

worsening of several metabolic parameters [75�].

The important role of the gut microbiota in tuning the host

muscle metabolism in response to dietary and environmen-

tal changes, was further demonstrated by recent experimen-

tal animal studies. Lahiri et al. [76��] observed that germ-free

mice displayed reduced muscle mass and signs of muscle

atrophy with reduced muscle strength. They hypothesized

that microbes and their metabolites, such as SCFAs, regulate

skeletal muscle mass and function. Treating germ-free mice

with a cocktail of SCFAs (a mix of acetate, butyrate and

propionate) resulted in a reduced expression of Atrogin-1 and

an increased expression of myoblast determinant protein 1

(MyoD), two key muscle genes associated with muscle

atrophy and muscle differentiation respectively, and could

partly restore muscles trength. Virtue et al. [77��] showed

how tryptophan-derived metabolites produced by the gut

microbiota controlled the expression of specific microRNAs
in white adipocytes in mice to regulate energy expenditure

and insulin sensitivity.

Whether alteration in the composition and functionality of

the gut microbiota can also be associated with modulation

in the myokine-adipokine profile and function is a

plausible, but little explored possibility (Figure 1). As

briefly mentioned above, physical activity plays a key role

in the modulation of the myokine-adipokine profile.

Additionally, a recent, and elegant human and animal study

demonstrated that physical activity can significantly impact

on the composition of the gut microbiota and induce

changes in the production of SCFAs, g-aminobutyric acid,

and branched-chain amino acids, thereby conferring

metabolic benefits on glucose homeostasis and insulin

sensitization in peripheral tissues [78�]. A study in elite

rugby players showed that athletes have a greater gut

microbial diversity compared to sedentary individuals

[79�]. Interestingly, rugby players also had a high

abundance of the species A. muciniphila [79�].

When it comes to the effects of exercise, duration and

intensity of the physical activity are two important factors

affecting the metabolism of several organs and tissues

[80]. Although normal physical activity is considered to be

beneficial for general health, extensive and prolonged

exercise (endurance training) has been associated with an
Current Opinion in Pharmacology 2020, 52:9–17 
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increase in intestinal permeability, compromising gut

barrier function and resulting in the translocation of

bacterial cell wall components such as LPS (Figure 1)

[81,82]. This may ultimately lead to a transient state of

inflammation which could potentially affect the myokine-

adipokine profile. However, further studies are required

to validate this hypothesis. Another way that the gut

microbiota could affect host metabolism, is by chemically

interacting with host cells and regulating gene expression

via epigenetic events such as DNA methyltransferases,

DNA hydroxylases, histone acetyltransferases, histone

deacetylases and histone methyltransferases. These

effectors are mediated by gut derived metabolites such

as SCFAs, particularly acetate and butyrate [83]. Since

SCFAs are produced by fermentation of indigestible

carbohydrates, this would be in agreement with studies

reporting how dietary factors act on epigenetic pathways

[84]. Interestingly, physical activity itself has also been

associated with epigenetic adaptations, that are translated

into gene-specific regulation of inflammatory and

metabolic processes in human skeletal muscle under

condition of high-fat diet [85�].

Although it is evident from the literature that the gut

microbiota has the capacity to change the profile of

myokines and adipokines, it is less clear whether this

interaction is bidirectional: can myokines/adipokines

modulate gut microbiota composition? In a recent review,

Andrews et al. [86] described that different cytokines and

chemokines can exert either positive or negative effects on

the intestinal epithelial barrier integrity. For example,

TNFa, interferon-g, and other interleukins can alter

tight junction morphology and may indirectly impact on

gut microbial communities, as studies have shown that

disruption of the gut barrier permeability impacts on the

intestinal microbiome [87,88��]. It is therefore possible that

myokines and adipokines can exert similar effects.

Conclusion
Taken together these findings suggest a close connection

between diet, physical activity, gut microbiota, bacterial

metabolites, gut barrier function, inflammation, and the

regulation of the myokine-adipokine function. The

identification of novel mediators and a better understand-

ing of how these processes are linked mechanistically may

eventually result in the discovery of new potential

therapeutic strategies in the prevention of metabolic

disorders. In particular, nutritional and non-nutritional

strategies that target the gut microbiota, thereby

modifying the profile of myokines and adipokines, may

be of great importance.
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