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Objective: The aim of this study was to systematically review and meta-
analyze all literature reporting the basic reproductive number (Ry), effective
reproductive number (R, or R,), and the serial interval (SI) values of severe
acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection.
Summary Background Data: To assess the rate at which an infectious
disease can spread in a population, the 2 measures, Ry and R, or Ry, are widely
used. One of the parameters which influence the calculations is the SI, the
period between symptom onset in an infector and an infectee.

Methods: Web of Science, PubMed, Scopus, and Science Direct searching up
to May 10, 2020, was performed. A continuous random-effect model was
applied using the DerSimonian-Laird (inverse variance) method. Heteroge-
neity and publication bias were assessed.

Results: A total of 39 articles met the eligibility criteria. Our results
demonstrated the mean SI was 5.45 days, with the 95% confidence interval
(CI) of 4.23 to 6.66. Pooled estimates for reproduction rates was 3.14 (95%
CI: 2.69-3.59) for Ry and 3.18 (95% CI: 2.89-3.47) for R,. Subgroup analysis
by geographical region and date of publication revealed variations over both
time and geography in calculated Ry and R, values. As time has progressed,
predicted Ry and R, values had decreased globally.

Conclusions: The study findings indicate that one SARS-CoV-2-infected
person is likely to infect 3 persons, supporting that COVID-19 is a highly
contagious disease. As an essential objective metrics implied in risk assess-
ment for this emerging pandemic, monitoring Ry and R. is necessary to
indicate the effectiveness or failures of mitigation efforts.
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he coronavirus disease-2019 (COVID-19) is caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2).! The
human-to-human transmission was reported, and the outbreak was
declared by the World Health Organization (WHO).? As of May 10,
2020, a total of 1,353,919 coronavirus cases, including 80,361
(0.05%) deaths, have been reported in the United States (https://
www.worldometers.info/coronavirus/country/us/). The quantifica-
tion of transmissibility during epidemics is essential to implementing
mitigation strategies for public health strategies aimed at mitigation
of spread.?

An essential aspect of evaluating a viral pandemic is measur-
ing the speed of viral transmission, which is assessed by the basic
reproduction number (R, pronounced as R naught).* Ry, simply put,
is the average number of people who become infected by an infec-
tious person.” It is a transmissibility estimate used to quantify the
successful onward transmission of an infection in a host population.®
An R value >1 indicates that the number of cases is growing, and the
virus will continue to spread among the population, whereas an R
value <1 indicates that the number of cases is decreasing and
infection rates will decline, stemming or stopping the spread of
the virus.” However, this estimation is not without limitation. Ry
assumes zero immunity in a population, which means that it cannot
reflect changes in time.®

The shortcomings of Ry can be overcome with the use of
another metric known as the effective reproduction number (R, or
R,), which is defined as the number of infections caused by any case
and does not assume zero immunity.” Both R, and R, are affected by
susceptibility (the proportion of a given population that can be
infected), infectivity (the ability of a pathogen to establish an
infection), and removal (case disappearance by either death or
recovery) as described in the Susceptibility — Infectivity — Removal
(SIR) model by Kermack & McKendrick.'® However, R, is depen-
dent on time and immunity and thus more accurately reflects the
current situation.!! As a result, R, is better estimated during the latter
course of an epidemic when the population has acquired resistance to
infection.®12

Two final terms to understand when describing the speed with
which an infectious disease spreads in the population are generation
time and serial interval (SI).'> Generation time is defined as the
interval between infections in 2 consecutive generations.'* The ST is
the time between the onset of symptoms in a primary case and the
onset of symptoms in secondary cases.!> Together, generation time,
SI, and R, indicate the risk of an infectious agent concerning
epidemic spread.!>18

Based on early case counts in Wuhan, China, initial estimates
of Ry for the COVID-19 outbreak were 2.2 and 2.7.'%%° As the
situation progressed worldwide, the exponential growth rate of new
cases resulted in different estimates of R, which is to be expected as
further information is gathered.®?! A wide range of methods to
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calculate Ry have been described using the growth rate of the
epidemic, the epidemic curve’s size, and shape, the final attack rate,
or by direct observation of disease transmission from one generation
to the next.?22> Here, we systematically reviewed the basic repro-
ductive number and the SI of the COVID-19 viral infection in
datasets and studies until May 10.

METHODS

Literature Search Strategy

This systematic review and meta-analysis were conducted
according to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA, http://links.lww.com/SLA/C529)
Statement.”* A comprehensive and systematic search of literature
from November 1, 2019, to May 10, 2020, was conducted using the
electronic databases Web of Science, PubMed, Scopus, and Science
Direct by 2 reviewers (E.T. and R.E.). Our search strategy included the
following terms: “Novel coronavirus 2019,” 2019 nCoV,” “COVID-
19,” “Wuhan coronavirus,” “Wuhan pneumonia,” or “SARS-CoV-
2” AND “basic reproduction number,” “‘reproduction rate,” “RO0,”
“effective reproduction number,” or “Re,” AND “serial interval.”
The PubMed function “related articles” was used to extend the search.
Additionally, we then performed manual searches of the bibliographies
for potentially relevant articles in the references selected.

Study Selection

All article types (eg, full article, abstract, letter) were included
if they presented a reproduction number or SI estimate for COVID-19
infection. We did not exclude papers based on language or publica-
tion status (preprint or peer-reviewed).

Data Abstraction

Articles meeting the inclusion criteria were abstracted inde-
pendently by 3 reviewers (MH, ET, RE), who recorded relevant
values in a predesigned excel sheet. The results were compared
electronically, with discrepancy resolved by referring to the source
article. Data on the study characteristics, including the first author’s
last name, date of publication, journal name, study design, country of
the population, time of calculation, and methodology of R, calcula-
tion, were recorded.

Statistical Analysis

All data analyses were performed using OpenMeta [Ana-
lyst]*® and a comprehensive meta-analysis software version 3.0.26
One-arm meta-analysis was employed to estimate pooled means and
standard deviation (SD). Medians and interquartile range were
converted to mean and SD using the following formulas: [Mean
= (Q1 + median + Q3)/3] and [SD = IQR/1.35], whereas values
reported in the articles as 95% CI were converted to SD using the
following formula [SD= \/ N * (upper limit of CI — lower limit of
CI)/3.92]. A continuous random-effect model was applied using the
DerSimonian-Laird (inverse variance) method.?”?® Cumulative
meta-analysis was carried out to detect temporal changes in the
magnitude of effect sizes.

]25

Assessment of Heterogeneity and Publication Bias
Between-study heterogeneity was evaluated using Cochran Q
statistic and quantified using /? statistics. Articles were considered to
have significant heterogeneity between studies when the P value <0.1
or I? >50%. Subgroup analysis by ethnicity and date of publication was
performed to resolve heterogeneity. Leave-one-out sensitivity analysis
was also employed to assess the robustness of the results and to
determine further the influence of each study as a source for inter-
study heterogeneity. Meta-regression with the random-effects model
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was conducted using the restricted maximum likelihood algorithm to
explore potential sources of heterogeneity. Finally, publication bias
was assessed using a funnel plot and quantified Egger linear regression
test.23% Asymmetry of the collected studies’ distribution by visual
inspection or P value <0.1 indicated obvious publication bias.>® The
Duval and Tweedie’s trim and fill method’s assumption was considered
to reduce the bias in pooled estimates.?’

RESULTS

Study Characteristics for Meta-Analysis

The initial literature search produced 1697 relevant articles.
After removing duplicates and primary screening, 145 full-text
articles were assessed for eligibility in the meta-analysis. Of these,
106 were excluded due to a lack of sufficient data. Thus, a total of 39
articles published between January 31 and May 7, 2020, were
included in the meta-analysis part (Fig. 1). They covered a wide
global range, including Asia (China, Korea, Japan, Singapore, and
Taiwan), Europe (Germany, Italy, Spain, France, UK, Switzerland),
Africa (Nigeria), and the Americas (Canada, Mexico, and Peru).
Notably, no studies were identified in the United States.

A total of 18 studies reported data on the SI (Table S1, http://
links.lww.com/SLA/C528).7-219721.31-43 Of those, 14 reported val-
ues for both mean and standard deviation and were counted by the
software for the calculations of SI. For basic reproduction number, 29
studies, including 39 different datasets, were included.>~7-%-11:19~
23.37.42.44=53 Another 3 studies with 10 datasets reported an effective
reproduction number (Table S1, http://links.lww.com/SLA/
C528).81231 Qur estimated values for R, in Louisiana were added
in the analysis to compare temporal changes with other studies.

One-Arm Meta-Analysis for a Serial Interval of
COVID-19

The overall analysis revealed a pooled mean estimate of 5.45
[95% confidence interval (CI) = 4.23-6.66, P < 0.001], with
substantial evidence of inter-study heterogeneity (Cochran Q =
719.6, P < 0.001, > = 98.19%). Asian studies reported a summary
mean of 5.44 (95% CI = 3.87-7.01, P < 0.001), whereas SI values
for non-Asian articles were 5.43 (95% CI = 4.23-6.66, P < 0.001).
Articles published early in the outbreak reported a wider confidence
interval than the following measures in April: SIs of 6.63 (95% CI =
4.26-9.01, P < 0.001) in January—March versus 5.12 (95% CI =
3.86-6.38, P < 0.001) in April/May. Stratifying the results by
ethnicity and publication date also demonstrated significant hetero-
geneity (Fig. 2). Sensitivity analysis failed to resolve heterogeneity.
The cumulative meta-analysis revealed minimal evidence accumu-
lated after April 1. Meta-regression showed that source and date of
publication had no significant influence on calculated pooled esti-
mates (ethnicity: coefficient = 0.49,95% CI = —1.7t0 2.7, P = 0.66;
publication date: coefficient = —1.66, 95% CI=—-3.9 to 0.58, P =
0.14). For publication bias assessment, remarkable asymmetry, and
Egger test (P = 0.001) suggested significant bias.

One-Arm Meta-Analysis for the Basic Reproductive
Number of COVID-19

Studies reporting basic reproductive numbers analyzed the
period between January 10 and April 23. The random-eftects sum-
mary for the basic and effective reproduction rates was 3.14 (95% CI
=2.69-3.59) and 3.18 (95% CI = 2.89-3.47), respectively. Signifi-
cant heterogeneity was observed in our results (Cochran Q =
856251.1, P < 0.001, I* = 99.9%) (Fig. 3).

Subgroup analysis by ethnicity showed studies from Asia to
have an overall estimate of 3.00 and a 95% CI of 2.51to 3.50 with
heterogeneity (> = 100%, P < 0.001). European studies showed a
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FIGURE 1. Workflow for the selection process of eligible studies.

wider range of Ry: 3.79 (95% CI = 0.89-6.68) with high evidence of
inter-study heterogeneity (> = 99.98%, P < 0.001). No significant
changes were seen in the leave-one-out sensitivity analysis. On
stratification by the time of analysis, rather than the date of publication,
estimations in January from China and Japan showed a summary of
2.77 (95% CI = 1.73-3.81). Estimations subsequently increased in
February from China, Japan, and Italy to 3.79 (95% CI = 3.15-4.43)
but declined in calculations during March (estimate = 2.01,95% CI =
0.92-3.11) and April (estimate = 1.94,95%CI = 1.92—1.95) in China,
Mexico, and the UK. Heterogeneity still existed with /7 near 100%.
Meta-regression analysis showed spatiotemporal variations between
studies might not influence the calculated pooled estimates.

One-Arm Meta-Analysis for the Effective
Reproductive Number of COVID-19

Temporal screening of the R, across studies revealed that
studies of European origin initially reported very high estimates,
ranging from 3.27 to 6.32, with pooled values of 5.18 (3.40—6.96).

418 | www.annalsofsurgery.com

Estimations of studies gradually declined through March (estimate =
3.98,95% CI = 3.38—-4.58) and April (estimate = 1.01, 95% CI =
0.65-1.38), crossing below 1.0 in May (estimate = 0.92, 95% CI =
0.79-1.05) (Fig. 4). Despite the observed temporal trend on sub-
group analysis, heterogeneity was not resolved. One noted difference
is the calculated R, in the 3 included studies performed by 3 different
methods:  Susceptible-Exposed-Infectious-Hospitalized-Recovered
(SEIHR) model, Exponential growth method, and Sequential Bayes-
ian method (Table S1, http://links.Jww.com/SLA/C528).

DISCUSSION

Tracing viral transmission rates over time provides objective data
on the effectiveness of interventions and can be used to inform decisions
regarding adjusting of control efforts such as social restrictions, testing,
and contact tracking.*! The collective goal of these control efforts is to
drive down viral transmission rates (Ry and R.) to below 1 and, ideally, as
close to 0 as possible, to bring the outbreak under control, thereby saving
lives and mitigating strain on hospital systems.”! Here, we sought to
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FIGURE 2. One-arm meta-analysis for the serial interval. (A) Forest plot showing the pooled estimate and confidence interval for the
serial interval.”-%,31-35.19-21.36-43 (B) Cumulative meta-analysis showing a temporal trend in literature. (C) Funnel plot showing
significant publication bias. (Egger test P=0.001, Begg test P = 0.66) (D) Subgroup analysis by geographical region with unsolved
heterogeneity. (E) Subgroup analysis by date of publication with unsolved heterogeneity.

systematically examine previously published estimates and measures of Of note, one of the more critical methodological assump-
COVID-19 spread worldwide to identify the magnitude of transmission tions in the construction of a model for both R, and R, is the length
chain across different geographic regions and, in comparison, with other of the SI used during the estimation, as it can profoundly impact the
viral infections. model output.*> Longer SIs have previously been associated with
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higher estimates of Ry when compared to estimates from the same
dataset using shorter SIs.>® Our meta-analysis for the SI determined
the pooled estimate to be 5.45 days (95% CI: 4.23-6.66 days).
Longer SIs have previously been associated with higher estimates
of R when compared to estimates from the same dataset using
shorter SIs.>° This value is higher than the early result of Li et al.'”
One potential explanation is that media portrayals of over-run
hospitals and the institution of a stay-at-home order may have
led to a later patient presentation. Alternatively, the value could be
influenced by testing shortages throughout much of March and into
April that existed in Louisiana and across the United States. In
other words, symptoms were present, but cases could not be
confirmed. On comparison with other viral infection (Fig. 5A),
the estimated time between successive cases in a chain of trans-
mission in the current meta-analysis (5.45 days) was shorter than
the mean SI for SASR-CoV-1 (8.4 days), measles (14.9 days), and
smallpox (22.4 days).3-60

For the reproductive number, our literature review found the
average overall Ry to be 3.14 (2.69-3.59). These values exceed
WHO estimates, which range from 1.4 to 2.5.5! Of the reviewed
studies, those that used stochastic (ie, random modeling) and statis-
tical methods for deriving R, reached reasonably comparable esti-
mates.’! Studies that utilized mathematical methods produced
estimates that are, on average, higher.?! In more recent studies,
Ry estimates seem to have stabilized around 2 to 3. R, estimations
provided at later stages can be expected to be more reliable as they
are constructed using more case data and include the effect of
awareness and intervention.'”> Tt is worthwhile to note that the
WHO estimates are consistently below all published estimates,
although the higher end of the WHO range includes the lower
end of the estimates reviewed here. Due to insufficient data and
short onset time, current estimates of Ry for COVID-19 are possibly
biased. There is also concern that asymptomatic carriers of the virus

420 | www.annalsofsurgery.com

display no clinical symptoms but are known to be contagious. This
population, as well as those with mild disease, may be substantially
contributing to propagation.®?

Pooled estimates of effective reproductive rate showed evi-
dence of time-dependence, as high as 5.18 in February and 3.98 in
March, to fluctuate at 1.0 after that. Mitigation measures, social
distancing, and stay-at-home orders might lead to a lower incidence
of new cases reported. Estimation methods across datasets might also
play a role in the heterogeneity of the reproduction rates; those
derived using the statistical exponential growth model or Sequential
Bayesian approach with a mean R, of 5.1 and 4.0 were double that
calculated by SEIR model (2.5).

Estimated values of the reproduction number for different
viruses are summarized from a variety of published sources
(Fig. 5B),>~% with measles at the highest reproduction rate
(15.0) whereas influenza A virus was the least (1.3). For the same
coronavirus family, the Ry for SARS-CoV-1 was 3.1, and MERS-
CoV was 4.6. However, the values should be interpreted with caution
due to the heterogeneity in the methodology used for R, estimation
and the different timing along the course of the viral spread.

Our meta-analysis has several potential limitations. First, there
was apparent heterogeneity among studies when grouped by geo-
graphical region and when grouped temporally. Some articles
included in this review did not differentiate between the basic and
effective reproductive numbers or state the required population
immunity assumptions when reporting the basic reproductive num-
bers. Therefore, we chose to present summary values for the basic
and effective reproductive numbers together to simplify the results.
Furthermore, we did not assess included studies for the type or
quality of their methodology. We did, however, attempt to control for
bias. Lastly, we only included published estimates of the reproduc-
tive number, which may not be representative of unpublished repro-
ductive number values.
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CONCLUSIONS

Our results found that one person is likely to infect 3 persons.
Monitoring of Ry and R, is crucial objective measures of viral
transmission necessary to indicate the effectiveness or failures of
mitigation efforts. These measures are not politically motivated and
can be used to inform ongoing policy decisions in the interest of
public health and to stem the global havoc wreaked by the
current pandemic.
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